МАТЕРИАЛЫ ПЕДАГОГИЧЕСКОЙ СЕКЦИИ КОНФЕРЕНЦИИ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СМЕЖНЫЕ ВОПРОСЫ», ПОСВЯЩЁННОЙ 110-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ И.Г. ПЕТРОВСКОГО

УДК 517.91, 372.851

О ПРЕПОДАВАНИИ КУРСА ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В МГУ

И. Н. Сергеев

Московский государственный университет им. М. В. Ломоносова Россия, 119991, г. Москва, Ленинские Горы, 1; e-mail: in serg@mail.ru

Ставятся и обсуждаются наиболее важные проблемы преподавания курса обыкновенных дифференциальных уравнений (ОДУ). За основу взят обязательный годовой курс, читавшийся автором на протяжении ряда лет студентам механико-математического факультета Московского государственного университета имени М. В. Ломоносова.

Ключевые слова: курс обыкновенных дифференциальных уравнений, преподавание, программа курса.

1. На что опирается курс ОДУ

В лекциях, адресованных студентам 2-го курса механико-математического факультета, можно использовать без доказательства только тот материал, который изучен ими на 1-м курсе или в предшествующей части 2-го. Опорными дисциплинами для курса ОДУ служат, прежде всего, математический анализ, линейная алгебра и аналитическая геометрия.

2. Приложения ОДУ к другим курсам

Понятия и факты из курса ОДУ в дальнейшем используются и развиваются в следующих обязательных курсах: уравнения в частных производных, оптимальное управление, дифференциальная геометрия, численные методы, а также в различных разделах механики.

Кроме того, без курса ОДУ немыслимо чтение специальных курсов: динамические системы, теория устойчивости, качественные свойства решений и др.

Однако постепенное разрастание материала курса приводит к постоянному перераспределению его обязательной и специальной составляющих.

3. Основное содержание курса ОДУ

Условно курс можно разбить на следующие восемь основных глав.

- І. Поля направлений на плоскости.
- II. Существование и единственность решений.
- III. Общая теория линейных уравнений и систем.
- IV. Линейные уравнения и системы с постоянными коэффициентами.
- V. Зависимость решений от параметров.
- VI. Устойчивость по Ляпунову.
- VII. Автономные системы.
- VIII. Уравнения с частными производными первого порядка.

Распишем содержание этих глав более подробно.

- І. Поля направлений на плоскости
- Уравнение в дифференциалах. Поле направлений. Интегральная кривая. Обыкновенное дифференциальное уравнение. Уравнение первообразной.
- Общее решение. Интеграл уравнения в дифференциалах. Уравнение в полных дифференциалах. Ветвление потенциала.
- Автономное уравнение. Общее решение. Интегральный критерий единственности. Дифференциальный признак единственности.
- Уравнение с разделяющимися переменными. Разделение переменных. Замена переменных в однородном уравнении.
 - II. Существование и единственность решений
- Задача Коши. Теорема существования и единственности (локальная). Принцип сжимающих отображений. Приближения Пикара.
- Теорема существования (Пеано). Ломаные Эйлера. Теорема Арцела Асколи.
- Единственность в целом.
- Продолжаемость. Существование непродолжаемых решений. Продолжаемость до границы области.
- Продолжаемость решений линейной системы. Леммы об интегральном (Гронуолла Беллмана) и дифференциальном неравенствах.
- Теоремы существования, единственности и продолжаемости для уравнения произвольного порядка. Каноническая замена переменных. Продолжаемость решений линейного уравнения. Уравнение колебаний математического маятника.
- Уравнение, не разрешенное относительно производной. Расширенная задача Коши. Теорема существования и единственности. Особое решение. Дискриминантная кривая. Метод введения параметра. Уравнение Клеро.
 - III. Общая теория линейных уравнений и систем
- Общее решение однородной системы. Оператор Коши. Теорема об изоморфизме. Фундаментальная система решений.
- Определитель Вронского. Линейная зависимость решений. Формула Лиувилля—Остроградского.
- Общее решение неоднородной системы. Метод вариации постоянных.
- Линейные периодические системы. Оператор монодромии. Мультипликатор. Существование периодического решения.
- Общее решение линейного уравнения. Определитель Вронского и линейная зависимость скалярных функций. Восстановление уравнения по его фундаментальной системе. Функция Грина задачи Коши.
- Краевая задача для уравнения второго порядка. Теорема об альтернативе. Функция Грина краевой задачи.
- Нули решений уравнения второго порядка. Перемежаемость нулей решений одного уравнения. Теорема сравнения (Штурма). Оценки колеблемости. Теорема Кнезера. Характеристические частоты решений.

- IV. Линейные уравнения и системы с постоянными коэффициентами
- Определение экспоненты и логарифма оператора. Формула Эйлера. Связь экспоненты с линейной системой.
- Вычисление экспоненты и логарифма оператора. Комплексификация оператора и системы. Жорданова форма матрицы.
- Линейная система с постоянными коэффициентами. Фундаментальная система решений. Метод неопределенных коэффициентов. Квазимногочлены.
- Теория Флоке-Ляпунова. Ляпуновские преобразования. Приводимость периодической системы к постоянной.
- Линейное уравнение с постоянными коэффициентами. Характеристический многочлен. Фундаментальная система решений. Уравнение Эйлера.
- Линейное уравнение с квазимногочленом в правой части. Частное решение специального вида. Резонанс. Колебательный контур. Параметрический резонанс.

V. Зависимость решений от параметров

- Непрерывная зависимость решений от правых частей. Компактно-открытая топология. Непрерывность зависимости решений от параметра и от начального значения.
- Дифференцируемость решений по параметру. Лемма Адамара. Система в вариациях по параметру и по начальному значению.
- Разложение решений в ряд по параметру. Отображение Коши. Фазовый объём. Теорема Лиувилля. Гамильтоновы системы.
- Зависимость от параметра решений уравнений произвольного порядка. Вынужденные колебания маятника. Уравнение в вариациях. Малые колебания маятника.
- Выпрямление интегральных кривых.

VI. Устойчивость по Ляпунову

- Определение устойчивости решений систем и уравнений. Устойчивость по Ляпунову. Асимптотическая устойчивость. Их независимость от начального значения.
- Устойчивость линейной системы. Утверждения об устойчивости решений однородных и неоднородных систем. Критерии устойчивости систем с постоянными и периодическими коэффициентами.
- Функция Ляпунова. Производная в силу системы. Леммы Ляпунова об устойчивости, асимптотической устойчивости и неустойчивости. Теорема Четаева.
- Линеаризация системы. Теорема Ляпунова об устойчивости по первому приближению.
- Положения равновесия маятника. Исследование устойчивости методами Ляпунова.
- Показатели Ляпунова. Условная устойчивость.

VII. Автономные системы

- Фазовое пространство. Фазовые траектории. Временные сдвиги траекторий. Три типа фазовых траекторий.
- Динамическая система. Фазовый поток. Генератор фазового потока.
- Выпрямление фазовых траекторий. Выпрямляющий диффеоморфизм.
- Первый интеграл автономной системы. Независимость первых интегралов в точке. Полная система первых интегралов. Гамильтониан автономной гамильтоновой системы.
- Одномерное фазовое пространство. Фазовая прямая. Колебания маятника и поворот окружности. Фазовое и временное среднее. Иррациональный поворот окружности.
- Двумерное фазовое пространство. Уравнение фазовых кривых на плоскости. Пара маятников. Фигуры Лиссажу. Обмотка тора. Детерминизм и хаос.
- Уравнение Ньютона. Интеграл энергии. Закон сохранения энергии.
- Особые точки на плоскости. Седло, узел, центр, фокус. Положения равновесия маятника. Бифуркации. Модель Лотки Вольтерры.
- Цикл. Отображение Пуанкаре. Предельные множества. Предельный цикл на плоскости. Мешок Бендиксона. Мультипликатор цикла.

VIII. Уравнения в частных производных первого порядка

- Линейное уравнение в частных производных первого порядка. Характеристики. Общее решение.
- Задача Коши. Теорема существования и единственности (локальная). Отсутствие единственности в целом.
- Квазилинейное уравнение. Характеристики. Инвариантность интегральных поверхностей. Теорема существования и единственности (локальная) решения задачи Коши.
- Интегрирующий множитель уравнения в дифференциалах. Существование. Общий вид.
- Уравнение Хопфа. Одномерное поле скоростей свободных частиц. Ударные волны.

4. Список приложений, рассматриваемых в курсе ОДУ

Дадим некоторый (далеко не полный) список возможных приложений курса к другим дисциплинам или к дополнительным разделам самих дифференциальных уравнений:

- 1. Эволюционные уравнения: остывание тела, вытекание жидкости, взрыв.
- 2. Уравнение колебаний маятника.
- 3. Уравнение Клеро.
- 4. Уравнение колебательного контура.
- 5. Гамильтоновы системы.
- 6. Уравнение Ньютона.
- 7. Поворот окружности и обмотка тора.
- 8. Модель Лотки Вольтерра для системы «хищник жертва».
- 9. Уравнение Хопфа для одномерного поля скоростей свободных частиц.

5. Материал, излагаемый обычно без доказательства

В силу извечной проблемы недостатка часов часть программы реализуется без подробных доказательств (иногда со ссылкой на другие, еще не прочитанные курсы) или вовсе опускается (с последующим её включением в различные спецкурсы). Как правило, эта часть содержит следующий материал.

- 1. Теорема Пеано о существовании решения задачи Коши для уравнения с непрерывной правой частью.
 - 2. Существование логарифма оператора и теория Флоке Ляпунова.
 - 3. Теорема о дифференцируемости решений по параметру.
- 4. Теорема Четаева (или лемма Ляпунова о неустойчивости) и часть теоремы Ляпунова, отвечающая за неустойчивость по первому приближению.
 - 5. Показатели Ляпунова и характеристические частоты.
 - 6. Квазилинейные уравнения в частных производных первого порядка.

6. О наглядности подачи материала в ущерб строгости

В современных западных учебниках по ОДУ зачастую преобладает описательный стиль изложения, характеризующийся следующими чертами:

- 1) отсутствуют точные формулировки утверждений или разбираются только их частные (демонстрационные) случаи;
- 2) доказательства даются в виде набросков или вообще предоставляются читателям;
- 3) превалируют наглядные соображения, иллюстрации, компьютерные рисунки, схемы, графики;
- 4) употребляется множество красивых и модных слов, смысл которых весьма расплывчат, но нигде не разъясняется.

7. О математической строгости формулировок

Для того чтобы представить, к чему может привести нестрогий стиль изложения строгой математической дисциплины, разберем вопрос, верна ли следующая формулировка теоремы существования и единственности решения залачи Копи:

если
$$f\in C^1$$
, то для любой точки $(t_0,x_0)\in G$ задача
$$\left\{ \begin{array}{ll} x'=f(t,x), & f\in C^1(G), & (t,x)\in G\subset R\times R^n,\\ x(t_0)=x_0 \end{array} \right.$$

имеет единственное решение?

Ответ таков: эта жаргонная формулировка неверна в принципе, поскольку никакое решение данной задачи не может быть единственным (вместе с ним той же задаче будет удовлетворять и его сужение на любую меньшую окрестность начального момента).

8. Общность изложения материала

Нередко для упрощения изложения курса на исследуемые объекты накладываются ненужные ограничения. Например, отвечая на вопрос «npu каких ограничениях на npagyo часть уравнения

$$x' = f(t, x), \quad (t, x) \in G \subset R \times R^n$$

любое его решение может быть продолжено до непродолжаемого?», мало кто осознает, что последнее свойство решений имеет место всегда, безо всяких ограничений на правую часть уравнения вообще!

9. Обратимость общеизвестных утверждений

В заключение приведем еще один пример, показывающий, что даже в хорошо изученном классическом материале, каковым и является стандартный курс ОДУ, есть место новым, неожиданным и красивым утверждениям.

При каких дополнительных условиях (в терминах определителя Вронского W) на скалярные функции $f_1, \ldots, f_n \in C^n(R)$ верна импликация, обратная к следующей:

если f_1, \ldots, f_n — линейно зависимы, то $W_{f_1, \ldots f_n}(t) \equiv 0$?

Казалось бы, таких условий нет, по крайней мере, об этом нигде ничего не написано. Однако они существуют: так, для линейной зависимости функций f_1,\ldots,f_n к тождеству $W_{f_1,\ldots,f_n}(t)\equiv 0$ достаточно добавить, например, следующее условие: $W_{f_1,\ldots,f_{n-1}}(t)\neq 0$ для всех $t\in R$.

ЛИТЕРАТУРА К КУРСУ ЛЕКЦИЙ

- 1. Арнольд В.И. Обыкновенные дифференциальные уравнения. М.: Наука, 1984.
- 2. Бибиков Ю. Н. Общий курс обыкновенных дифференциальных уравнений. М.: Выс-шая школа, 1991.
- 3. Боровских А.В., Перов А.И. Лекции по обыкновенным дифференциальным уравнениям. Ижевск: НИЦ РХД, 2004.
- Еругин Н. П. Книга для чтения по общему курсу дифференциальных уравнений. Минск: Наука и техника, 1979.
- 5. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений / Под ред. А. Д. Мышкиса, О. А. Олейник. М.: МГУ, 1984.
- 6. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974.
- 7. Сергеев И. Н. Дифференциальные уравнения. М.: Академия, 2013.
- 8. Степанов В. В. Курс дифференциальных уравнений. М.: Физматгиз, 1959.
- 9. Филиппов А. Ф. Введение в теорию дифференциальных уравнений. М.: Ком Книга, 2007.

Поступила 28.01.2013

ABOUT TEACHING COURSE OF ORDINARY DIFFERENTIAL EQUATIONS AT MSU

I. N. Sergeev

The article posed and discussed the most important issues of teaching the course of ordinary differential equations (ODE). It is based on a compulsory annual course taught by the author over the years to the students of Mechanics and Mathematics Faculty of M. V. Lomonosov Moscow State University.

Keywords: course of ordinary differential equations, teaching methods, course outline.